Field-induced phase transition and relaxor character in submicrometer-structured lead-free (Bi0.5Na0.5)0.94Ba0.06TiO3 piezoceramics at the morphotropic phase boundary.

نویسندگان

  • Lorena Pardo
  • Elisa Mercadelli
  • Alvaro García
  • Klaus Brebøl
  • Carmen Galassi
چکیده

Submicrometer-structured (Bi(0.5)Na(0.5))(0.94)Ba(0.06)TiO(3) ceramics ((G) < 720 nm) from nanopowders were studied. The real part of the optimum room temperature set of piezoelectric coefficients obtained from resonances of the BNBT6 dense ceramic disks and shear plates [d(31) = (-37 + 1.33i) pC·N(-1), d(15) = (158.3 - 8.31i) pC·N(-1), k(t) = 40.4%, k(p) = 26.8%, and k(15) = 40.2%] and d(33) (148 pC·N(-1)) can be compared with the reported properties for coarse-grained ceramics. Shear resonance of thickness-poled plates is observed at T = 140°C. Permittivity versus temperature curves of poled samples show relaxor character up to T(i) = 230°C on heating and T(i) = 210°C on cooling of the depoled samples. The phase transition from the room-temperature ferroelectric (FE) to a low-temperature non-polar at zero field (LTNPZF) phase can be observed as a sharp jump in ε(δ)(33)'(T) curves or, as the degree of poling decreases, as a soft change of slope of the curves at T(FE-LTNPZF) = T(d) = 100°C. This dielectric anomaly is not observed on cooling of depoled samples, because the FE phase is field-induced. The observed macroscopic piezoelectric activity above T(d) is a consequence of the coexistence of nanoregions of the FE phase in the interval between T(FE-LTNPZF) and T(i).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3–BaTiO3 piezoceramics

The correlation between structure and electrical properties of lead-free (1−x)(Bi1/2Na1/2)TiO3–xBaTiO3 (BNT-100xBT) polycrystalline piezoceramics was investigated systematically by in situ synchrotron diffraction technique, combined with electrical property characterization. It was found that the morphotropic phase boundary (MPB) between a rhombohedral and a tetragonal phase evolved into a morp...

متن کامل

Electric field effects on the phase transitions in †001‡-oriented „1Àx...Pb„Mg1Õ3Nb2Õ3...O3-xPbTiO3 single crystals with compositions near the morphotropic phase boundary

Dielectric behavior and phase transitions of @001# oriented (12x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals with x529, 31, 32, and 33 % were investigated by impedance measurements and high resolution x-ray diffraction analysis under various electrical and thermal conditions. Application of a bias field along @001# can shift down the Rhombohedral-Tetragonal structural phase transition, so that the...

متن کامل

Electromechanical Anisotropy at the Ferroelectric to Relaxor Transition of (Bi0.5Na0.5)0.94Ba0.06TiO3 Ceramics from the Thermal Evolution of Resonance Curves

(Bi0.5Na0.5)0.94Ba0.06TiO3 dense ceramics were obtained from autocombustion sol-gel synthesized nanopowders and sintered at 1050 ◦C for 1–2 h for the study of the electromechanical anisotropy. Measurement of the complex impedance spectrum was carried out on thin ceramic disks, thickness-poled, as a function of the temperature from 16 ◦C up to the vanishing of the electromechanical resonances at...

متن کامل

Creation and destruction of morphotropic phase boundaries through electrical poling: a case study of lead-free (Bi(1/2)Na(1/2))TiO3-BaTiO3 piezoelectrics.

We report the first direct evidence that the morphotropic phase boundary in ferroelectric materials, along with the associated strong piezoelectricity, can be created, destroyed, or even replaced by another morphotropic phase boundary through phase transitions during electrical poling. The real-time evolution of crystal structure and domain morphology during the poling-induced phase transitions...

متن کامل

Dual strain mechanisms in a lead-free morphotropic phase boundary ferroelectric

Electromechanical properties such as d33 and strain are significantly enhanced at morphotropic phase boundaries (MPBs) between two or more different crystal structures. Many actuators, sensors and MEMS devices are therefore systems with MPBs, usually between polar phases in lead (Pb)-based ferroelectric ceramics. In the search for Pb-free alternatives, systems with MPBs between polar and non-po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on ultrasonics, ferroelectrics, and frequency control

دوره 58 9  شماره 

صفحات  -

تاریخ انتشار 2011